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Abstract. In the paper we study the uniqueness of entire functions sharing a linear polynomial
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1. Introduction, Definitions and Results. Let f be a nonconstant meromor-

phic function in the open complex plane C and a be a polynomial. We denote E(a; f)

the set of a-points of f , where each point is counted according its multiplicity. We

denote by E(a; f) the reduced form of E(a; f). For A ⊂ C we denote by nA(r, a; f) the

number of zeros of f − a, counted with multiplicities, which lie in A∩{z : |z| < r}. We

define NA(r, a; f) as follows

NA(r, a; f) =

∫ r

0

nA(t, a; f)− nA(0, a; f)

t
dt+ nA(0, a; f) log r.

Let f and g be two nonconstant meromorphic functions. We say that f and g share

the polynomial a CM(counting multiplicities) if E(a; f) = E(a; g). Also we say that f

and g share a IM(ignoring multiplicities ) if E(a; f) = E(a; g). For standard definitions

and results we refer the reader to (Hayman, 1964).

This paper was presented by the ICAHMMSMM–2019

493



494 goutam kumar ghosh

In 1986 G. Jank, E. Mues and L. Volkman (1986) considered the case when an entire

function shared a single value with its first two derivatives and proved the following

result.

THEOREM A. (Jank, Mues and Volkman, 1986) Let f be a nonconstant entire function

and a(̸= 0) be a finite number. If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a; f (2)), then

f ≡ f (1).

In fact, in Theorem A, f and f (1) share the value a CM(counting multiplicities).

Again considering f = ewz + w − 1, where wm−1 = 1, w ̸= 1 and m(≥ 3) is an integer

and a = w, we can verify that the second derivative in Theorem A can not be simply

replaced by the mth derivative for m ≥ 3(see Zhong, 1995) .

In 1995 H. Zhong (1995) generalised Theorem A and proved the following theorem.

THEOREM B. (Zhong, 1995) Let f be a non-constant entire function and a(̸= 0) be a

finite complex number. If f and f (1) share the value a CM and E(a; f) ⊂ E(a; f (n)) ∩
E(a; f (n+1)) for n ≥ 1, then f ≡ f (n)

For A ⊂ C ∪ {∞}, we denote by NA(r, a; f)(NA(r, a; f)) the counting function

(reduced counting function) of those a-points of f which belong to A.

In 2011 I. Lahiri and G. K. Ghosh (2011) improved Theorem B in the following

manner.

THEOREM C. (Lahiri and Ghosh, 2011) Let f be a nonconstant entire function and

a, b be two nonzero finite constants. Suppose further that A = E(a; f) \ E(a; f (1)) and

B = E(a; f (1)) \ {E(a; f (n)) ∩ E(b; f (n+1))} for n(≥ 1). If each common zero of f − a

and f (1) − a has the same multiplicity and NA(r, a; f) +NB(r, a; f
(1)) = S(r, f), then

f = λe
bz
a + ab−a2

b or f = λe
bz
a + a, where λ(̸= 0) is a constant.

Throughout the paper we denote by L a nonconstant linear differential polynomial

in f of the form

L = a1f
(1) + a2f

(2) + · · ·+ anf
(n), (1.1)

where a1, a2, . . . , an(̸= 0) are constants.

In 1999 P. Li (1999) improved Theorem B by considering a linear differential

polynomial instead of the derivative. The result of P. Li may be stated as follows:
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THEOREM D. (Li, 1999) Let f be nonconstant entire function and L be defined by

(1.1). If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a;L) ∩ E(a;L(1)), then f ≡ f (1) ≡ L.

In the same paper P. Li (1999) also proved the following result.

THEOREM E. (Li, 1999) Let f be a non-constant entire function and L be defined

by (1.1). If E(a; f) = E(a;L) , E(a; f) ⊂ E(a; f (1)) ∩ E(a;L(1)) and
n∑

k=1
2kak ̸= 0 or

n∑
k=1

ak ̸= −1, then f ≡ f (1) ≡ L.

In 2011 I. Lahiri and G. K. Ghosh (2011) improved Theorem E by replacing the

nature of sharing in the following manner.

THEOREM F. (Lahiri and Ghosh, 2011) Let f be a non-constant entire function

in C, a be a finite nonzero complex number and L be defined by (1.1). Further

suppose that E1)(a; f) ⊂ E(a; f (1)) and NA(r, a; f) + NB(r, a;L) = S(r, f), where

A = E(a; f) \ E(a;L) and B = E(a;L) \ {E(a; f (1)) ∩ E(a;L(1))}. Then one of the

following cases holds :

(i) f = a+ αez and L = αez, where α is a nonzero constant;

(ii) f = L = αez, where α is a nonzero constant;

(iii) f = a + α2

a e2z − αez and L = αez, where
n∑

k=1
2kak = 0,

n∑
k=1

ak = −1 and α is a

nonzero constant.

In the same paper I. Lahiri and G. K. Ghosh also proved the following result.

THEOREM G. (Lahiri and Ghosh, 2011) Let f be a nonconstant entire function in

C, a be a finite nonzero complex number and L be defined by (1.1). Further let

NA(r, a; f) + NB(r, a;L) = S(r, f), where A = E(a; f) \ E(a;L) and B = E(a;L) \
{E(a; f (1)) ∩ E(a;L(1))}. If f ̸≡ L then one of the following holds :

(i) f = a+ αez and L = αez, where α is a nonzero constant;

(ii) f = a + α2

a e2z − αez and L = αez, where
n∑

k=1
2kak = 0,

n∑
k=1

ak = −1 and α is a

nonzero constant.
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In 2013 I. Lahiri and I. Kaish (2013) considered the case when f shares a nonzero

finite value with f (1), L(k) and L(k+1) for some nonnegative integer k. They proved the

following theorem.

THEOREM H. (Lahiri and Kaish, 2013) Let f be a non-constant entire function, a

be a finite nonzero complex number and k(≥ 0) be an integer. Further suppose that L

defined by (1.1) be such that L(k+1) is nonconstant and

(i) NA(r, a; f) + NB(r, a;L
(k)) + NC(r, a; f

(1)) = S(r, f), where A = E(a; f) \
E(a;L(k)), B = E(a;L(k)) \ {E(a; f (1)) ∩ E(a;L(k+1))} and C = E(a; f (1)) \
E(a;L(k+1));

(ii) E1)(a; f) ⊂ E(a; f (1)) ∩ E(a;L(k+1)) and

(iii) E(2(a; f) ∩ E(0;L(k+1)) = ∅.

Then L = αez and f = αez or f = a+ αez, where α(̸= 0) is a constant.

Some interesting results on this topic have been obtained (see, e.g. (Kaish and I.

Lahiri, 2018 and Wang, Lei and Chen, 2014)).

We now state the main result of the paper.

THEOREM 1.1 Let f be a nonconstant entire function in C, a = αz + β(̸≡ f), where

α( ̸= 0) and β are constants , and L be defined by (1.1).

Further suppose that

(i) NA(r, a; f) + NB(r, a;L
(k)) = S(r, f), where A = E(a; f) \ E(a;L(k)) and

B = E(a;L(k)) \ {E(a; f (1)) ∩ E(a; f (2)) ∩ E(a;L(k+1))}, where k(≥ 1) be an

integer;

(ii) E1)(a; f) ⊂ E(a; f (1)) and

(iii) N (2(r, a; f) = S(r, f).

Then f = L = cez or f = a+ cez , where c(̸= 0) is a constant.
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In the next theorem we see the possible form of an entire function if we drop the

hypothesis E1)(a; f) ⊂ E(a; f (1)). In fact the Case 2 of the proof of Theorem 1.1

suggests the following theorem.

THEOREM 1.2 Let f be a nonconstant entire function in C, a = αz + β(̸≡ f), where

α( ̸= 0) and β are constants, and L be defined by (1.1) . Further let NA(r, a; f) +

NB(r, a;L
(k)) = S(r, f), where k(≥ 1) be an integer and N (2(r, a; f) = S(r, f), where

A = E(a; f) \ E(a;L(k)) and B = E(a;L(k)) \ {E(a; f (1)) ∩ E(a; f (2)) ∩ E(a;L(k+1))}.
If f ̸≡ L then f = a+ cez, where c(̸= 0) is a constant.

The following example shows that the hypothesis (i) of Theorem 1.1. is essential.

EXAMPLE 1.1 Let f(z) = e(z), L = f (2) + f (3) and a(z) = z then clearly

NA(r, a; f) + NB(r, a;L
(k)) ̸= S(r, f) and E1)(a; f) ⊂ E(a; f (1)). It is obvious that

each common zero of f − a and f (1) − a has the same multiplicity, then a − a(1) =

(f (1) − a(1)) − (f (1) − a), we have that if z0 is a common zero of f-a and f (1) − a

with multiplicity q(≥ 2), then z0 is a zero of a − a(1) with multiplicity q − 1. So

N(2(r, a; f) ≤ 2N(r, 0; a−a(1))+NA(r, a; f) = S(r, f) that is hypothesis (iii) of Theorem

1.1. holds, but neither f ≡ L nor f = a+ cez.

2. Lemmas. In this section we present some necessary lemmas.

LEMMA 2.1 {p.47 (Hayman, 1964)} Let f be a nonconstant meromorphic function

and a1,a2,a3 be three distinct meromorphic functions satisfying T (r, aµ) = S(r, f) for

µ = 1, 2, 3. Then

T (r, f) ≤ N(r, 0; f − a1) +N(r, 0; f − a2) +N(r, 0; f − a3) + S(r, f).

LEMMA 2.2 {p.57 (Hayman, 1964)} Suppose that g is a nonconstant meromorphic

function and Ψ =
l∑

µ=0
aµg

(µ) where a,µs are meromorphic functions satisfying T (r, aµ) =

S(r, g) for µ = 0, 1, 2, · · · , l. If Ψ is nonconstant, then

T (r, g) ≤ N(r,∞; g) +N(r, 0; g) +N(r, 1;Ψ) + S(r, g).

LEMMA 2.3 Let f be a transcendental meromorphic function and a = αz + β, where

α( ̸= 0) and β are constants. Then

T (r, f) ≤ N(r,∞; f) +N(r, a; f) +N(r, a;L(k)) + S(r, f).
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Proof: The lemma follows from Lemma 2.2 for g = f − a, a0 = 0 and Ψ = L(k)

a . This

proves the lemma.

LEMMA 2.4 {p.68 (Hayman, 1964)} Let f be meromorphic and transcendental function

in C and fnP = Q, where P , Q are differential polynomials in f and the degree of Q

is at most n. Then m(r, P ) = S(r, f).

LEMMA 2.5 Let f be a transcendental entire function and L defined by (1.1) be such

that L(k+1) is nonconstant. Let a = αz + β, where α(̸= 0) and β are constants and

m(r, a; f) = S(r, f). Further suppose that

(i) NA(r, a; f) + NB(r, a;L
(k)) = S(r, f), where A = E(a; f) \ E(a;L(k)) and

B = E(a;L(k)) \ {E(a; f (1)) ∩ E(a; f (2)) ∩ E(a;L(k+1))}, where k(≥ 1) be an

integer;

(ii) E1)(a; f) ⊂ E(a; f (1)). Then f ≡ L ≡ cez, where c is a nonzero constant.

Proof: Let

γ =
f (1) − a

f − a
. (2.1)

From the hypotheses we see that γ has no simple pole and

N(r, γ) ≤ NA(r, a; f) +NB(r, a;L
(k)) + S(r, f)

= S(r, f)

and since m(r, a; f) = S(r, f) we get

m(r, γ) = m(r,
f (1) − a

f − a
)

= m(r,
f (1) − a(1)

f − a
+

a(1) − a

f − a
) + S(r, f)

≤ m(r,
a(1) − a

f − a
) + S(r, f)

= S(r, f).
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Hence T (r, γ) = S(r, f). From (2.1) we get

f (1) = γ1f + µ1, (2.2)

where γ1 = γ and µ1 = a(1− γ).

We repeat the above argument (j − 1)-times by differentiating (2.2) we get

f (j) = γjf + µj(j = 1, 2, . . .), (2.3)

where γj and µj are meromorphic functions satisfying γj = γ
(1)
j−1 + γ1γj−1 and

µj = µ
(1)
j−1 + µ1γj−1 for j = 1, 2, . . .. Also we note that T (r, γj) + T (r, µj) = S(r, f) for

j = 1, 2, . . ..

Now

L(k) =
n∑

j=1

ajf
(j+k) =

 n∑
j=1

ajγj+k

 f +
n∑

j=1

ajµj+k = ξf + η, say. (2.4)

Clearly T (r, ξ) + T (r, η) = S(r, f). Differentiating (2.4) we get

L(k+1) = ξf (1) + ξ(1)f + η(1). (2.5)

Let z0 be a simple zero of f − a such that z0 ̸∈ A ∪ B ∪ C where C = {z :

a(z) − a(1)(z) = 0}. Then from (2.4) and (2.5) we get a(z0)ξ(z0) + η(z0) = a(z0) and

a(z0)ξ(z0)+a(z0)ξ
(1)(z0)+η(1)(z0) = a(z0). First suppose that aξ+η ̸≡ a. Since every

multiple zero of f − a must belong to A ∪B ∪ C then we get

N(r, a; f) ≤ NA(r, a; f) +NB(r, a;L
(k)) +N(r, a; aξ + η)

= S(r, f),

which is impossible because m(r, a; f) = S(r, f). Hence

aξ + η ≡ a. (2.6)

Similarly

aξ + aξ(1) + η(1) ≡ a. (2.7)

Differentiating (2.6) and then subtract (2.7) we get a − a(1) = ξ(a − a(1)). Since a ̸≡
a(1) we get ξ ≡ 1 and η ≡ 0. Then from (2.4) we get f ≡ L(k).
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By actual calculation we see that γ2 = γ2 + γ(1) and γ3 = γ3 + 3γγ(1) + γ(2). In

general, we now verify that

γj+k = γj+k + Pj+k−1[γ], (2.8)

where Pj+k−1[γ] is a differential polynomial in γ with constant coefficients having degree

at most j + k − 1 and weight at most j + k. Also we note that each term of Pj+k−1[γ]

contains some derivative of γ.

Let (2.8) be true. Then

γj+k+1 = γ
(1)
j+k + γ1γj+k

= (γj+k + Pj+k−1[γ])
(1) + γ(γj+k + Pj+k−1[γ])

= γj+k+1 + (j + k)γj+k−1γ(1) + (Pj+k−1[γ])
(1) + γPj+k−1[γ]

= γj+k+1 + Pj+k[γ],

noting that differentiation does not increase the degree of a differential polynomial but

increase its weight by 1. So (2.8) is verified by mathematical induction.

Since
n∑

j=1
ajγj+k = ξ = 1, we get from (2.8)

n∑
j=1

ajγ
j+k +

n∑
j=1

ajPj+k−1[γ] ≡ 1. (2.9)

If z0 is a pole of γ with multiplicity p(≥ 2), then z0 is a pole of
n∑

j=1
ajγ

j+k with

multiplicity (n+ k)p and it is a pole of
n∑

j=1
akPj+k−1[γ] with multiplicity not exceeding

(n+ k − 1)p+ 1. Since (n+ k)p > (n+ k − 1)p+ 1, it follows that z0 is a pole of the

left hand side of (2.9) with multiplicity (n+ k)p, which is impossible. So γ is an entire

function. If γ is transcendental, from (2.9) we get by Lemma 2.4 that m(r, γ) = S(r, γ)

and if γ is a polynomial then following the proof of Lemma 2.4 we get m(r, γ) = O(1).

Therefore γ is a constant. Hence from (2.9) we obtain γj+k = γj+k for j = 1, 2, . . ..

Since ξ ≡ 1, we see that
n∑

j=1
ajγ

j+k ≡ 1. Also from (2.2) we obtain f (1) =

γf + a(1 − γ) then f (2) = γf (1) + α(1 − γ) and f (3) = γf (2) and so f (2) = ceγz,

where c( ̸= 0) is a constant. Then f (1) = ceγz

γ + d. Since L(k) ≡ f so L(k+1) ≡ f (1)
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implies d + ceγz

γ = L(k+1) = a1f
(k+2) + a2f

(k+3) + · · · + anf
(k+n+1) = ceγz(a1γ

k +

a2γ
k+1 + · · · + anγ

k+n−1) then d = 0 and
n∑

j=1
ajγ

j+k = 1. So f (1) = ceγz

γ and

f = ceγz

γ2 + d1. Since m(r, a; f) = S(r, f) then obviously N(r, a; f) ̸= S(r, f). By

hypothesis NA(r, a; f)+NB(r, a;L
(k)) = S(r, f) so E(a; f)∩E(a; f (1)) ̸= ∅. Hence from

f (1) = ceγz

γ and f = ceγz

γ2 + d1 we get d1 = 0 and γ = 1. Hence L ≡ f ≡ cez .

3. Proof of the theorem

Proof of Theorem 1.1 First we claim that f can not be a polynomial. If

f is a polynomial, then T (r, f) = O(log r). Since f is a polynomial so f − a

and L(k) − a have only finite number of zeros. If A ̸= ∅ then A contains finite

number of zeros of f − a. Then NA(r, a; f) = O(log r), similarly if B ̸= ∅ then

NB(r, a;L
(k)) = O(log r) and so NA(r, a; f) + NB(r, a;L

(k)) = O(log r). But by the

hypothesis NA(r, a; f) + NB(r, a;L
(k)) = S(r, f) . Therefore T (r, f) = O(log r) =

S(r, f), a contradiction. Hence A = B = ∅. Therefore E(a; f) ⊂ E(a;L(k)) ⊂
E(a; f (1)) ∩ E(a; f (2)) ∩ E(a;L(k+1)).

First we suppose that degree of f be 1 and we consider f = A1z + B1, where

A1(̸= 0), B1 are constants. Then f (1) = A1, f
(2) = 0, L(k) = a1f

(k+1)+ a2f
(k+2)+ · · ·+

anf
(k+n) = 0 = L(k+1). Now f − a = A1z + B1 − αz − β = 0, implies z = β−B1

A1−α is

the only zero of f − a, A1−β
α is the only zero of f (1) − a and −β

α is the only zero of

L(k) − a and also since E(a;L(k)) ⊂ E(a; f (1)) so, A1−β
α = −β

α implies A1 = 0, which is

a contradiction.

We denote by N(2(r, a; f | L(k) = a) the counting function (counted with

multiplicities) of those multiple a-points of f which are a-points of L(k). We first

note that

N(2(r, a; f) ≤ NA(r, a; f) +N(2(r, a; f | L(k) = a)

≤ (n+ k)N (2(r, a; f) + S(r, f)

= S(r, f).

Now let f be a polynomial of degree greater than 1. Since N(2(r, a; f) = S(r, f), we

see that f − a has no multiple zero and so all the zeros of f − a are distinct. Since

E(a; f) ⊂ E(a; f (1)) and deg(f − a) = deg(f (1) − a) + 1, we arrive at a contradiction.
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Therefore f is a transcendental entire function. Now we divide our argument into

the following cases.

CASE 1. f ≡ L(k). Then f (1) ≡ L(k+1). Now

m(r, a; f) = m

(
r,

1

f − a

)

= m(r,
f (1) − a(1)

f − a
· 1

f (1) − a(1)
)

≤ m

(
r,

1

f (1) − a(1)

)
+ S(r, f)

≤ m

(
r,

a(1)

f (1) − a(1)
+ 1

)
+ S(r, f)

= m

(
r,

L(k+1)

f (1) − a(1)

)
+ S(r, f)

= S(r, f). (3.1)

So by Lemma 2.5 we get L ≡ f ≡ cez where c(̸= 0) is a constant.

CASE 2. f ̸≡ L(k). Then we consider following subcases :

SUBCASE 2.1. Suppose that L(k+1) ̸≡ f (1). Here we have to consider following

subcases.

SUBCASE 2.1.1. Suppose L(k) ≡ L(k+1) and L(k) ̸≡ f (1). Then we have two

possibilities either L(k) ≡ L(k+1) and L(k+1) ≡ f (2) or L(k) ≡ L(k+1) and L(k+1) ̸≡ f (2).

If we consider the possibility L(k) ≡ L(k+1) and L(k+1) ≡ f (2). Then L(k) ≡ L(k+1)

implies L(k) = cez(c is a non zero constant) and so L(k+1) = f (2) = cez then

f (1) = cez + λ, and f = cez + λz + δ. Since L(k) ̸= f (1) obviously λ ̸= 0.

If we consider λz + δ ̸= a. Then by Lemma 2.1 we get

T (r, cez) ≤ N(r, 0; cez) +N(r,∞; cez) +N(r, a− λz − δ; cez) + S(r, cez)

= N(r, a; f) + S(r, cez). (3.2)

Since f = L(k+1) + λz + δ, we see that if z1 is a zero of f − a such that z1 ̸∈ A ∪B
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then λz + δ = 0. Therefore

N(r, a; f) ≤ NA(r, a; f) +NB(r, a;L
(k)) +N(r, 0;λz + δ)

= S(r, f).

which contradicts (3.2).

Next we consider λz+ δ ≡ a, then f = cez + a and so f (1) = cez +α and f (2) = cez.

Hence L(k) = (a1 + a2 + · · ·+ an)ce
z = f (2) = cez implies

n∑
j=1

aj = 1. Hence we get

L(k) = L(k+1) = cez and f = a+ cez where c(̸= 0) is a constant and
n∑

j=1
aj = 1.

Next we consider the possibility L(k) ≡ L(k+1) and L(k+1) ̸≡ f (2). Hence L(k) ̸≡ f (2).

Then by the hypothesis we get

N(r, a;L(k)) ≤ NB(r, a;L
(k)) +N

(
r, 1;

L(k)

f (2)

)

≤ T

(
r,
L(k)

f (2)

)
+ S(r, f)

= N

(
r,
L(k)

f (2)

)
+ S(r, f)

≤ N(r, 0; f (2)) + S(r, f). (3.3)

Again

m(r, a; f) = m

(
r,

f (2)

f − a
· 1

f(2)

)

≤ m(r, 0; f (2)) + S(r, f)

= T (r, f (2))−N(r, 0; f (2)) + S(r, f)

= m(r, f (2))−N(r, 0; f (2)) + S(r, f)

≤ m(r, f)−N(r, 0; f (2)) + S(r, f)

= T (r, f)−N(r, 0; f (2)) + S(r, f)
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and so

N(r, 0; f (2)) ≤ N(r, a; f) + S(r, f). (3.4)

Hence from (3.3) and (3.4) we get

N(r, a;L(k)) ≤ N(r, a; f) + S(r, f), (3.5)

which implies by Lemma 2.3 that

T (r, f) ≤ 2N(r, a; f) + S(r, f). (3.6)

We put Φ =
f (2) − L(k)

f − a
and Ψ =

(a− a(1))f (2) − a(f (1) − a(1))

f − a
.

Then

N(r,Φ) ≤ NA(r, a; f) +NB(r, a;L
(k)) +N(2(r, a; f) + S(r, f)

= S(r, f),

also N(r,Ψ) = S(r, f), and m(r,Φ) = S(r, f), m(r,Ψ) = S(r, f). Therefore T (r,Φ) =

S(r, f) and T (r,Ψ) = S(r, f).

Since L(k) ̸= f (2) so Φ ̸≡ 0.

Let z2 be a simple zero of f − a such that z2 ̸∈ A ∪ B ∪ C where C = {z : a(z) −
a(1)(z) = 0}.

Then by Taylor’s expansion in some neighbourhood of z2 we get

f − a = (f − a)(z2) + (f − a)(1)(z2)(z − z2) + (f − a)(2)(z2)
(z − z2)

2

2

+(f − a)(3)(z2)
(z − z2)

3

6
+ . . .

= (a(z2)− a(1)(z2))(z − z2) + a(z2)
(z − z2)

2

2
+ f (3)(z2)

(z − z2)
3

6
+ . . .

Now differentiating we obtain

f (1) − α = a(z2)− a(1)(z2) + a(z2)(z − z2) + f (3)(z2)
(z − z2)

2

2
+ . . .



Entire functions sharing a linear polynomial with. . . 505

and

f (2) = a(z2) + f (3)(z2)(z − z2) + . . .

Also,

L(k) = L(k)(z2) + L(k+1)(z2)(z − z2) + L(k+2)(z2)
(z − z2)

2

2
+ . . .

= a(z2) + a(z2)(z − z2) + L(k+2)(z2)
(z − z2)

2

2
+ . . .

Therefore in some neighbourhood of z2 we get

Φ(z) =
a(z2) + f (3)(z2)(z − z2)− a(z2)− a(z2)(z − z2) +O(z − z2)

2

(a(z2)− α)(z − z2) +O(z − z2)2

=
(f (3)(z2)− a(z2))(z − z2) +O(z − z2)

2

(a(z2)− α)(z − z2) +O(z − z2)2

=
f (3)(z2)− a(z2) +O(z − z2)

a(z2)− α+O(z − z2)

Noting that a(z2)− α ̸= 0, then

Φ(z2) =
f (3)(z2)− a(z2)

a(z2)− α
. (3.7)

Also in some neighbourhood of z2 we get

Ψ(z) =

{a(z)− a(1)(z)}{a(z2) + f (3)(z2)(z − z2)} − a(z){a(z2)
−a(1)(z2) + a(z2)(z − z2)}+O(z − z2)

2

(a(z2)− α)(z − z2) +O(z − z2)2

=
α2(z − z2) + {(a(z)− α)f (3)(z2)− a(z)a(z2)}(z − z2) +O(z − z2)

2

(a(z2)− α)(z − z2) +O(z − z2)2

=
α2 + (a(z)− α)f (3)(z2)− a(z)a(z2) +O(z − z2)

a(z2)− α+O(z − z2)

Hence

Ψ(z2) =
(f (3)(z2)− a(z2)− α)(a(z2)− α)

a(z2)− α

= f (3)(z2)− a(z2)− α (3.8)
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From (3.7) and (3.8) we get

(a(z2)− α)Φ(z2) = Ψ(z2) + a(z2) + α− a(z2)

implies

(a(z2)− α)Φ(z2)−Ψ(z2)− α = 0.

If

(a− α)Φ−Ψ− α ̸≡ 0,

then we get

N(r, a; f) ≤ NA(r, a; f) +NB(r, a;L
(k)) +N(2(r, a; f)

+N(r, 0; (a− α)Φ−Ψ− α)

= S(r, f),

which contradicts (3.6).

Therefore

(a− α)Φ−Ψ− α ≡ 0. (3.9)

First we suppose that Ψ ≡ 0. Then from (3.9) and the definitions of Φ and Ψ we get

(a− α)f
(2)−L(k)

f−a = α and (a− α)f (2) − a(f (1) − α) = 0 implies

(a− α)f (2) − (a− α)L(k) = α(f − a) (3.10)

and

(a− α)f (2) = a(f (1) − α). (3.11)

From (3.10) and (3.11) we get

a(f (1) − α)− (a− α)L(k) = α(f − a). (3.12)

Differentiating (3.12) we get

af (2) + α(f (1) − α)− αL(k) − (a− α)L(k+1) = α(f (1) − α). (3.13)

Since L(k) ≡ L(k+1) then from (3.13) we get af (2) = aL(k) implies a(f (2) − L(k)) = 0,

since a ̸= 0 so f (2) − L(k) ≡ 0 and so Φ ≡ 0, which is a contradiction.
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Next we suppose that Ψ ̸≡ 0. Then from (3.9) and the definitions of Φ and Ψ we

get

(a− α)
f (2) − L(k)

f − a
− (a− α)f (2) − a(f (1) − α)

f − a
= α

this implies

−(a− α)L(k) + a(f (1) − α) = α(f − a). (3.14)

Differentiating both sides of (3.14) and put L(k) ≡ L(k+1) we get a(L(k) − f (2)) = 0,

since a ̸= 0 so f (2) − L(k) ≡ 0 and so Φ ≡ 0, which is a contradiction.

SUBCASE 2.1.2 Let L(k) ̸≡ L(k+1) and L(k) ≡ f (1).

We put τ =
(a− a(1))L(k) − a(f (1) − a(1))

f − a
.

Then

N(r, τ) ≤ NA(r, a; f) +NB(r, a;L
(k)) +N(2(r, a; f) + S(r, f)

= S(r, f),

also m(r, τ) = S(r, f). Therefore T (r, τ) = S(r, f).

Let z3 be a simple zero of f − a such that z3 ̸∈ A ∪ B ∪ C where C = {z : a(z) −
a(1)(z) = 0}.

Then by Taylor’s expansion in some neighbourhood of z3 we get

f − a = (f − a)(z3) + (f − a)(1)(z3)(z − z3)

+(f − a)(2)(z3)
(z − z3)

2

2
+O(z − z3)

3

= (a(z3)− α)(z − z3) + a(z3)
(z − z3)

2

2
+O(z − z3)

3

Now differentiating we obtain

f (1) − α = (a(z3)− α) + a(z3)(z − z3) + (z − z3)
2

and

L(k) = L(k)(z3) + L(k+1)(z3)(z − z3) +O(z − z3)
2

= a(z3) + a(z3)(z − z3) +O(z − z3)
2
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Therefore in some neighbourhood of z3 we get

τ(z) =

{a(z)− a(1)(z)}{a(z3) + a(z3)(z − z3)} − a(z){a(z3)
−α+ a(z3)(z − z3)}+O(z − z3)

2

(a(z3)− α)(z − z3) +O(z − z3)2

=
α2(z − z3)− αa(z3)(z − z3) +O(z − z3)

2

(z − z3)(a(z3)− α+O(z − z3))

=
−α(a(z3)− α) +O(z − z3)

a(z3)− α+O(z − z3)

= −α+O(z − z3)

Let P = τ + α. Then in some neighbourhood of z3 we get P (z) = O(z − z3).

First we suppose that P (z) ̸≡ 0. Since every multiple zero of f − a must belongs to

A ∪B ∪ C, then we get

N(r, a; f) ≤ NA(r, a; f) +NB(r, a;L
(k)) +N(r, 0;P )

= S(r, f).

Then from (3.17) we get T (r, f) = S(r, f), a contradiction. Hence P ≡ 0 and so

(a− α)L(k) − a(f (1) − α) + α(f − a) = 0.

Since L(k) ≡ f (1) then we get

(a− α)f (1) − a(f (1) − α) + α(f − a) = 0

which implies α(f − f (1)) = 0, since α ̸= 0 then f ≡ f (1). So f = cez where c(̸= 0) is a

constant. Then

L(k) = a1f
(k+1) + a2f

(k+2) + · · ·+ anf
(k+n)

= (a1 + a2 + · · ·+ an)ce
z

and L(k+1) = a1f
(k+2) + a2f

(k+3) + · · ·+ anf
(k+n+1)

= (a1 + a2 + · · ·+ an)ce
z.

So L(k) ≡ L(k+1) which is a contradiction.

SUBCASE 2.2. Let L(k) ̸≡ L(k+1) and L(k+1) ≡ f (1). Since L(k) ̸≡ L(k+1). Then by

hypothesis we get
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N(r, a;L(k)) ≤ NB(r, a;L
(k)) +N

(
r, 1;

L(k+1)

L(k)

)

≤ T

(
r,
L(k+1)

L(k)

)
+ S(r, f)

= N

(
r,
L(k+1)

L

)
+ S(r, f)

≤ N(r, 0;L(k)) + S(r, f). (3.15)

Again m(r, a; f) = m

(
r,

L(k)

f − a
.

1

L(k)

)
≤ m(r, 0;L(k)) + S(r, f)

= T (r, L(k))−N(r, 0;L(k)) + S(r, f)

= m(r, L(k))−N(r, 0;L(k)) + S(r, f)

≤ m(r, f)−N(r, 0;L(k)) + S(r, f)

= T (r, f)−N(r, 0;L(k)) + S(r, f)

and so

N(r, 0;L(k)) ≤ N(r, a; f) + S(r, f). (3.16)

Hence from (3.15) and (3.16) we get

N(r, a;L(k)) ≤ N(r, a; f) + S(r, f),

which implies by Lemma 2.3 that

T (r, f) ≤ 2N(r, a; f) + S(r, f). (3.17)

Therefore N(r, a; f) ̸= S(r, f). Also since L(k+1) ≡ f (1). Then L(k) ≡ f + c, where c

is a constant. Also since N(r, a; f) ̸= S(r, f) and by hypothesis we get c = 0. Hence

L(k) ≡ f, which contradicts the initial supposition of Case 2.

SUBCASE 2.3. Let L(k) ≡ L(k+1) ≡ f (1). Then L(k) ≡ L(k+1) implies L(k) = cez.

Hence L(k) ≡ L(k+1) ≡ f (1) = cez then f = cez + d, which implies f does not assume

the values d and ∞, by Lemma 2.1 we get

T (r, f) ≤ N(r, 0; f − a) +N(r, 0; f −∞) +N(r, 0; f − d) + S(r, f)

≤ N(r, a; f) + S(r, f).
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This implies N(r, a; f) ̸= S(r, f). Also since NA(r, a; f) +NB(r, a;L
(k)) = S(r, f) and

f = cez + d = L(k) + d we see that E(r, a; f) ∩ E(r, a;L(k)) ̸= ∅ this implies d = 0 and

so f ≡ L(k), we arrive at a contradiction. This completes the proof of the theorem.

4. An open problem. Is it possible to replace the set B of hypothesis (i) of

Theorem 1.1 by B = E(a;L(k)) \ {E(a; f (1)) ∩ E(a;L(k+1))}?
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